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Problem One 
The discriminating line produced by a single hidden node is perpendicular to the weight 

vector for that node’s inputs.  The output of a node with a threshold activation function is 

1 on the side of the discriminating line pointed to by the weight vector and zero on the 

side of the discriminating line away from the weight vector (see Figure 1).  

 

Figure 1:  The discriminating line produced by a single node. 

Thus, to distinguish the two classes, an output node must produce a shape that will isolate 

one class from another.  This can be accomplished by placing several discriminating lines 

together to form the shape shown in Figure 2. 
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Figure 2:  A summation of discriminating lines that will separate the two classes.  Weight vectors for each 

discriminating line are shown. 

The weight vectors and biases that form the shape in Figure 2 are shown in Table 1.  

Notice that the discriminating line follows the formula 
1 1 2 2v w x w x bias= + + .  This can 

be used to find the bias when 
2 0x = . 



   

Weight Vector Bias 

<-1, 0> 1 

<-1, 1> 0 

<1, 1> -4 

<1, 0> -3 

<0, -1> 0 

Table 1:  Weights and biases needed to form the shape in Figure 2. 

These discriminating lines can be summed together to form a classifier that produces zero 

when the input is inside of the shape and one when it’s outside.   Thus, the first output 

node is simply the sum of these discriminating lines, that is, all of its weights are 1 and it 

has no bias. 

The second output is the opposite of the first.  With a threshold activation function, the 

opposite output can be obtained by inverting the induced local field v and adding a bias 

so that zero inputs become positive, without causing activated hidden nodes to become 

positive.  Thus, all of the weights for the second output are -1 and the bias is any number 

0 1bias  . 

The following page shows the weights and biases for each node.  Figure 3 shows the 

value of each output for all possible input combinations. 

 

Figure 3:  Output one (left) and output two (right) for all inputs. 



   

 

Hidden Node One 

Weight Value 

11w  -1 

12w  0 

bias 1 

 

Hidden Node Two 

Weight Value 

21w  -1 

22w  0 

bias 1 

 

Hidden Node Three 

Weight Value 

31w  1 

32w  1 

bias -4 

 

Hidden Node Four 

Weight Value 

41w  1 

42w  0 

bias -3 

 

Hidden Node Five 

Weight Value 

51w  0 

52w  -1 

bias 0 

 

 

Output Node One 

Weight Value 

11w  1 

12w  1 

13w  1 

14w  1 

15w  1 

bias 0 

 

Output Node Two 

Weight Value 

11w  -1 

12w  -1 

13w  -1 

14w  -1 

15w  -1 

bias {0,1] 



   

Problem 2A 
Figure 4 shows how the length of the error vector varies as the number of iterations 

changes for a given value of the learning rate.  This is interesting as it shows that, for a 

single test case, there are several different domains.  The computation initially converges 

fairly quickly, and then does nothing more for many iterations, at which point it again 

begins to converge quickly.  Eventually, of course, a limiting point is reached.   
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Figure 4:  The dependence of the error vector on the number of iterations for a given learning rate. 

Figure 4 suggests the one may be able to perform several computations using a low 

number of iterations in order to obtain the general shape of the curve and then estimate 

the number of iterations needed to obtain a desired accuracy.  Of course, this single test 

case is not sufficient to draw this general conclusion. 

Figure 5 shows how the length of the error vector changes as both the iteration count and 

the learning rate are varied.  Isocontours are also shown to aid visualization.  This plot 

suggests that one could increase the learning rate arbitrarily to speed computation, which 

is of course not true.  This plot does, however, show that quick convergence can be 

obtained by using a large learning rate. 



   

 

Figure 5:  The error magnitude’s dependence upon both the learning rate and the number of iterations. 

Finally, Figure 6 shows that increasing the learning rate too much will keep the 

computation from converging.  Thus, an optimal combination is probably somewhere 

around 350 = , iterations=50.  This combination gives accuracy within MATLAB’s 

numerical limits, virtually instantaneously. 
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Figure 6:  If the learning rate is too large, convergence cannot be achieved. 

The code that produced these simulations can be found on my web page at 

http://www.geekspiff.com/academics/eee511/hw2. 

http://www.geekspiff.com/academics/eee511/hw2


   

Problem 2B 
Figure 7 shows the value of output one for all possible input values in the problem space.  

Output one is one when the binary inputs are identical and zero when they are not.  Since 

the inputs can be real-valued instead of integer-valued, the output gives intermediate 

results for non-integer inputs.  Output two is the opposite of output one.  The code that 

produced this plot is available on the web. 

 

Figure 7:  The probability of output 1 correctly classifying a set of two inputs 
1x  and 

2x  using the XOR 

relationship. 

I used 500 iterations and 10 =  to produce Figure 7.  I found that this computation was 

more sensitive to the learning rate.  Using a learning rate less than 2 or greater than 50 

did not result in convergence within a reasonable number of iterations (up to 5000).   

Problem 2C 
Figure 8 and Figure 9 show the response of an overly flexible network to all possible 

inputs after training.  The network shown in Figure 8 was trained for 3783 epochs (until 

the mean error magnitude was 0.1) with a learning rate of 0.1.  There were 200 nodes 

(plus a bias) in a single hidden layer, 2 inputs (plus a bias) and two outputs.  All nodes 

used a logistic sigmoid (with unity weight in the exponential) as the activation function.  

The network shown in Figure 9 had the same geometry, but used a different random seed.  

The final results are quite similar, but this network required a substantially longer 

computation time (4661 epochs).
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Figure 8:  Contour plot of the response of the 

first output node to all possible inputs in an 

overly flexible network. 

 

Figure 9:  The same system trained using a 

different random seed.  This computation took 

4661 epochs. 

Figure 10 shows how the error magnitude changed over successive epochs.  It appears 

that the network could have been trained longer, since the error magnitude had not 

flattened out. 
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Figure 10:  Evolution of the error magnitude over successive epochs.  It appears that the network would 

benefit from additional training, because the error has not leveled off. 

Problem 2d 
Adding a weight-decay regularizer has the effect of reducing the magnitude of the 

weights that do not contribute to the classification.  However, as implemented, the 

regularizer attempts to reduce all weights, making it more difficult to train the network.  

Table 2 shows how the error magnitude and the number of large synaptic weights in the 

network vary as the decay constant is changed.  A “large weight” is defined as a synaptic 

weight with a magnitude greater than one.  It is clear that the regularizer is good for 



   

reducing the number of weights needed in the network, but also makes it more difficult to 

train the network.  

Decay Constant Final Error Magnitude Large Weight Vectors 

0 0.11 177 
91 10  0.11 177 
71 10  0.11 169 
51 10  0.17 65 
31 10  0.45 0 

Table 2:  As the decay constant grows, the weight vectors decrease, but it becomes progressively more 

difficult to train the network. 


